3D simulation of laminated shell structures using the Proper Generalized Decomposition
نویسندگان
چکیده
Numerical simulations of composite structures are generally performed using multi-layered shell elements in the context of the finite elements method. This strategy has numerous advantages like a low computation time and the capability to reproduce the comportment of composites in most of cases. The main restriction of this approach is that they require an approximation of the comportment in the thickness. This approximation is generally no more valid near the boundary and loading conditions and when non linear phenomena like delamination occurs in the thickness. This paper explores an alternative to shell computation using the framework of the Proper Generalized Decomposition that is based on a separated representation of the solution. The idea is to solve the full 3D solid problem separating the in-plane and the out-of-plane spaces. Practically, a classical shell mesh is used to describe the in-plane geometry and a simple 1D mesh is used to deal with the out-of-plane space. This allows to represents complex fields in the thickness without the complexity and the computation cost of a solid mesh which is particularly interesting when dealing with composite laminates.
منابع مشابه
Experimental and Numerical Free Vibration Analysis of Hybrid Stiffened Fiber Metal Laminated Circular Cylindrical Shell
The modal testing has proven to be an effective and non-destructive test method for estimation of the dynamic stiffness and damping constant. The aim of the present paper is to investigate the modal response of stiffened Fiber Metal Laminated (FML) circular cylindrical shells using experimental and numerical techniques. For this purpose, three types of FML-stiffened shells are fabricated by a s...
متن کاملVibration Optimization of Fiber-Metal Laminated Composite Shallow Shell Panels Using an Adaptive PSO Algorithm
The paper illustrates the application of a combined adaptive particle swarm optimization (A-PSO) algorithm and the finite strip method (FSM) to the lay-up optimization of symmetrically fiber-metal laminated (FML) composite shallow shell panels for maximizing the fundamental frequency. To improve the speed of the optimization process, adaptive inertia weight was used in the particle swarm optimiz...
متن کاملA Quasi-3D Polynomial Shear and Normal Deformation Theory for Laminated Composite, Sandwich, and Functionally Graded Beams
Bending analyses of isotropic, functionally graded, laminated composite, and sandwich beams are carried out using a quasi-3D polynomial shear and normal deformation theory. The most important feature of the proposed theory is that it considers the effects of transverse shear and transverse normal deformations. It accounts for parabolic variations in the strain/stress produced by transverse shea...
متن کاملStudy of Laminated Composite MEMS and NEMS Performance in Nano Metric Operations
Precision of nano-metric operations is an important issue in nano-engineering studies. Several operative parameters might affect the quality of results. The parameters of the nano world are significant but not entirely controllable. However, the geometrical and mechanical properties of micro cantilevers are completely controllable. So, controlling the sensitivity of resulting image through t la...
متن کاملA reduced numerical strategy based on PGD for composite shell structures simulations
This paper explores an alternative to shell computation. The proposed strategy uses the Proper Generalized Methods based on a separated representation. The idea is to solve the full 3D solid problem separating the in-plane and the out-of-plane spaces. This allows to represents complex fields in the thickness without the complexity and the computational cost of a solid mesh which is particularly...
متن کامل